Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Water Res ; 256: 121621, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642536

ABSTRACT

Peracetic acid (PAA) has emerged as a new effective oxidant for various contaminants degradation through advanced oxidation process (AOP). In this study, sulfidated nano zero-valent iron-copper (S-nZVIC) with low Cu doping and sulfidation was synthesized for PAA activation, resulting in more efficient degradation of sulfamethoxazole (SMX, 20 µM) and other contaminants using a low dose of catalyst (0.05 g/L) and oxidant (100 µM). The characterization results suggested that S-nZVIC presented a more uniform size and distribution with fewer metal oxides, as the agglomeration and oxidation were inhibited. More significantly, doped Cu0 and sulfidation significantly enhanced the generation and contribution of •OH but decreased that of R-O• in S-nZVIC/PAA/SMX system compared with that of nZVIC and S-nZVI, accounting for the relatively high degradation efficiency of 97.7% in S-nZVIC/PAA/SMX system compared with 85.7% and 78.9% in nZVIC/PAA/SMX and S-nZVI/PAA/SMX system, respectively. The mechanisms underlying these changes were that (i) doped Cu° could promote the regeneration of Fe(Ⅱ) for strengthened PAA activation through mediating Fe(Ⅱ)/Fe(Ⅲ) cycle by Cu(Ⅰ)/Cu(Ⅱ) cycle; (ii) S species might consume part of R-O•, resulting in a decreased contribution of R-O• in SMX degradation; (iii) sulfidation increased the electrical conductivity, thus facilitating the electron transfer from S-nZVIC to PAA. Consequently, the dominant reactive oxygen species transited from R-O• to •OH to degrade SMX more efficiently. The degradation pathways, intermediate products and toxicity were further analyzed through density functional theory (DFT) calculations, liquid chromatography-mass spectrometry (LC-MS) and T.E.S.T software analysis, which proved the environmental friendliness of this process. In addition, S-nZVIC exhibited high stability, recyclability and degradation efficiency over a wide pH range (3.0∼9.0). This work provides a new insight into the rational design and modification of nano zero-valent metals for efficient wastewater treatment through adjusting the dominant reactive oxygen species (ROS) into the more active free radicals.

2.
Mar Environ Res ; 197: 106470, 2024 May.
Article in English | MEDLINE | ID: mdl-38574497

ABSTRACT

In this study, the pollution status of antibiotics and ARGs in sediments from the land-sea intersection of Liaodong Bay was analyzed. The results showed that the level of antibiotic pollution ranged from ND to 433.27 ng/kg, with quinolones and tetracycline as the dominant antibiotics. The relative abundance of ARGs ranged from 3.62 × 10-3 to 1.32 × 10-1 copies/16SrRNA copies, with aminoglycoside and MLSB resistance genes being dominant. Regarding spatial distribution, the land and estuary areas showed higher antibiotic pollution levels than the offshore areas. Similarly, the land and estuary areas exhibited higher antibiotic diversity than the offshore areas. The ARGs were widely distributed on land, and their abundance gradually decreased to the downstream estuary area. Land and coastal areas exhibited higher ARG diversity than estuary areas. Analysis of environmental factors revealed a significant correlation between ARGs and non-corresponding antibiotics, and some ARGs were affected by heavy metals Cu and Pb.


Subject(s)
Anti-Bacterial Agents , Bays , Genes, Bacterial , Environmental Monitoring/methods , China , Drug Resistance, Microbial/genetics
3.
Bioengineering (Basel) ; 11(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391609

ABSTRACT

Single-view cone-beam X-ray luminescence computed tomography (CB-XLCT) has recently gained attention as a highly promising imaging technique that allows for the efficient and rapid three-dimensional visualization of nanophosphor (NP) distributions in small animals. However, the reconstruction performance is hindered by the ill-posed nature of the inverse problem and the effects of depth variation as only a single view is acquired. To tackle this issue, we present a methodology that integrates an automated restarting strategy with depth compensation to achieve reconstruction. The present study employs a fast proximal gradient descent (FPGD) method, incorporating L0 norm regularization, to achieve efficient reconstruction with accelerated convergence. The proposed approach offers the benefit of retrieving neighboring multitarget distributions without the need for CT priors. Additionally, the automated restarting strategy ensures reliable reconstructions without the need for manual intervention. Numerical simulations and physical phantom experiments were conducted using a custom CB-XLCT system to demonstrate the accuracy of the proposed method in resolving adjacent NPs. The results showed that this method had the lowest relative error compared to other few-view techniques. This study signifies a significant progression in the development of practical single-view CB-XLCT for high-resolution 3-D biomedical imaging.

4.
Sci Total Environ ; 922: 171294, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417503

ABSTRACT

This study analyzed polybrominated diphenyl ethers (PBDEs) in Zhelin Bay, China, investigating their occurrence, sources, and environmental behavior. PBDE congeners were detected in all sampled media. The Σ13PBDE concentrations in the dissolved phase ranged from 1.04 to 41.40 ng/L, while the concentrations ranged in suspended particulate matter from 0.02 to 12.56 ng/L. In sediments, PBDE concentrations ranged from 1.41 to 8.57 ng/g. The higher proportion of PBDEs in the dissolved phase in the bay than in the estuary is attributable to the type of PBDE products used in the aquacultural process in Zhelin Bay. Moreover, correlation analysis between PBDE concentrations and environmental parameters showed that the primary factor influencing PBDE concentrations in Zhelin Bay sediments may shift from riverine inputs to aquaculture. Principal component analysis and positive matrix factorization revealed that PBDEs in the water of Zhelin Bay primarily originated from the degradation of octa-BDE, deca-BDE, and penta-BDE products employed in aquaculture. In contrast, the PBDEs in Zhelin Bay sediments mainly originated from riverine inputs. In addition, a level IV dynamic fugacity-based multimedia model was used to simulate the temporal variation of PBDE concentrations in Zhelin Bay. Modeled short-term trends showed a relatively swift transport of PBDE congeners in the water column to the atmosphere and sediments. Over the long term, sediment concentrations gradually decreased, in contrast to the less rapid declines observed in the atmosphere and water. Furthermore, this study revealed that the transport and transformation processes of PBDEs in the Zhelin Bay environment were considerably influenced by the diffusion coefficient in water, the water-side mass transfer coefficient at the water-sediment interface, the sediment resuspension rate, and the organic carbon-water partition coefficient.

5.
Plant Physiol Biochem ; 205: 108201, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995577

ABSTRACT

Although microplastic pollution has been widely studied, the mechanism by which they influence plant photosynthesis and carbon and nitrogen metabolism remains unclear. We aimed to explore the effects of polystyrene microplastics (PS) on photosynthesis and carbon and nitrogen metabolism in cucumber using 5 µm and 0.1 µm PS particles. The PS treatments significantly reduced the stability of cucumber mesophyll cells and photosynthetic parameters and increased the soluble sugar content in cucumber leaves. The 5 µm PS affected the photosynthetic pathway by changing the expression of enzyme genes required for the synthesis of NADPH and ATP, which decreased the photosynthetic capacity in cucumber leaves. However, 0.1 µm PS altered the genes expression of phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC), which affected the intercellular CO2 concentration and attenuated the negative effects on photosynthetic efficiency. Additionally, PS reduced the expression levels of nitrate/nitrite transporter (NRT) and nitrate reductase (NR), reducing the nitrogen use efficiency in cucumber leaves and mesophyll cells damage through increased accumulation of reduced glutathione (GSH), γ-glutamylcysteine (γ-GC), and citrulline. This study provides a new scientific basis for exploring the effects of microplastics on plant photosynthesis and carbon and nitrogen metabolism.


Subject(s)
Cucumis sativus , Cucumis sativus/metabolism , Plastics/metabolism , Microplastics/metabolism , Polystyrenes/metabolism , Carbon/metabolism , Transcriptome , Photosynthesis/physiology , Phosphoenolpyruvate Carboxylase/genetics , Nitrogen/metabolism , Plant Leaves/metabolism
6.
J Am Chem Soc ; 145(41): 22649-22658, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37811579

ABSTRACT

The heterogeneous reaction of nitryl chloride (ClNO2) on the air-water surface plays a significant role in the chloride lifecycle. The air-water surface is ubiquitous on ice surfaces under supercooled conditions, affecting the uptake and heterogeneous reaction processes of trace gases. Previous studies suggest that ClNO2 is formed on Cl-doped ice surfaces following the N2O5 uptake. Herein, a distinctive heterogeneous reaction mechanism of ClNO2 is suggested on an air-water surface containing Cl under supercooled conditions using combined classic molecular dynamics (MD) and Born-Oppenheimer MD simulations. It is found that N2O5 dissociates into a NO2+ and NO3- ionic pair on the top air-water surface. In the top layer of the surface containing barely any Cl-, NO2+ proceeds through hydrolysis and produces H3O+ and HNO3. Thus, surface acidification appears because of H3O+ yields. With NO2+ diffusion to the deep layer of the surface, NO2+ reacts with Cl- and forms ClNO2. Note that ClNO2 formation competes with NO2+ hydrolysis, and the rate of ClNO2 formation is 27.7[Cl-] larger than that of NO2+ hydrolysis. Afterward, the reaction of ClNO2 with Cl- becomes barrierless with the catalysis by H3O+, which is not feasible on a neutral surface. Cl2 is thus generated and escapes into the atmosphere (low solubility of Cl2), contributing to the Cl radical. The proposed mechanism bolsters the current understanding of ClNO2's fate and its role in Cl chemistry in extremely cold environments like the Arctic and other high-latitude regions in wintertime.

7.
Environ Sci Pollut Res Int ; 30(38): 88936-88948, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37450180

ABSTRACT

In this study, the occurrence and distribution of 49 antibiotic resistance genes (ARGs) and two integrase genes (intl1, intl2) in three major rivers of Hainan Island, China, were investigated in July 2021, and to explore the spatial distribution of the target genes in the three rivers with the potential influencing factors such as regional characteristics and environmental factors. The results showed that a total of 46 ARGs and two integrase genes were detected in water and sediment, and the absolute abundance of ARGs ranged from 1.16 × 103 to 2.97 × 107 copies/L and 3.34 × 103-1.55 × 107 copies/g. ARGs of macrolides, aminoglycosides, and sulfonamides were this study's main types of ARGs. The aadA2, tetE, ermF, tetX, aac(6')-Ib, tetW, and qnrS genes are predominant ARGs in the water and sediment of the three rivers. The relative abundance of ARGs shows higher abundance in the midstream and downstream and lower abundance in the upstream and estuarine. After conducting a correlation analysis, it was found that there was a significant positive correlation between the ARGs detected in the water of the three main rivers. However, in sediment, tetC was negatively correlated with tetQ, macB was negatively correlated with ermF and ereA (p < 0.05), while the remaining ARGs showed positive correlations. Specifically, there was no significant positive correlation between tetQ and tetC, macB and ereA, and ermF in the sediments. Among the nine environmental factors studied, pH was found to be the main factor associated with the occurrence of ARGs in the aquatic environment, but it was also significantly associated with only nine ARGs. Among the detected heavy metals, only Cd and Zn showed significant correlations with the two ARGs in the water bodies of the three main rivers. It indicated that the pollution of ARGs in the three major rivers was in the initial stage, the detection abundance was low, the influence of environmental factors was small, and the interaction between ARGs seemed to be the main driving force. This study provides a scientific basis for further understanding the occurrence of ARGs and their influencing factors in a tropical island environment, and lays a foundation for subsequent management.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Islands , Drug Resistance, Microbial/genetics , China , Water/analysis
8.
Chemosphere ; 336: 139174, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37301517

ABSTRACT

Nanoplastics (NPs) are emerging pollutants posing risks to marine biota and human health due to their small size and high bioavailability. However, there are still knowledge gaps regarding effects of co-existing pollutants on NPs toxicity to marine organisms at their respective environmentally relevant concentrations. Herein we investigated developmental toxicity and histopathological alterations caused by co-exposure of polystyrene nanoplastics (PS-NPs) and bisphenol A (BPA) to marine medaka, Oryzias melastigma. Embryos at 6 h post-fertilization were exposed to 50-nm PS-NPs (55 µg/L) or BPA (100 µg/L) or co-exposed to a combination of both. Results showed that PS-NPs exhibited decreased embryonic heart rate, larval body length, and embryonic survival as well as larval deformities such as hemorrhaging and craniofacial abnormality. When co-exposed, BPA mitigated all the adverse developmental effects caused by PS-NPs. PS-NPs also led to an increase in histopathological condition index of liver with early inflammatory responses, while co-exposure of BPA with PS-NPs did not. Our data suggest that the toxicity reduction of PS-NPs in the presence of BPA might result from the decreased bioaccumulation of PS-NPs caused by the interaction between BPA and PS-NPs. This study unveiled the impact of BPA on the toxicity of nanoplastics in marine fish during early developmental stages and highlight the need of more research on the long-term effects of complex mixtures in the marine environment by applying omics approaches to better understand the toxicity mechanism.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Humans , Polystyrenes/toxicity , Oryzias/physiology , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 894: 164263, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37315614

ABSTRACT

Concentrations of 11 organophosphate esters (OPEs) were investigated in surface water and atmosphere samples collected from the South Pacific and Fildes Peninsula. TEHP and TCEP were the dominant OPEs in South Pacific dissolved water, with concentration range of nd-106.13 ng/L and 1.06-28.97 ng/L, respectively. The total concentration of ∑10OPEs in the South Pacific atmosphere was higher than that in Fildes Peninsula, ranging from 216.78 to 2033.97 pg/m3 and 161.83 pg/m3, respectively. TCEP and TCPP were the most dominant OPEs in the South Pacific atmosphere, while TPhP was the most prevalent in the Fildes Peninsula. The air-water exchange flux of ∑10OPEs at the South Pacific was 0.04-3.56 ng/m2/day, with a transmission direction of evaporation totally determined by TiBP and TnBP. The atmospheric dry deposition dominated the transport direction of OPEs between air and water, with an flux of Σ10OPEs at 10.28-213.62 ng/m2/day (mean: 85.2 ng/m2/day). The current transport flux of OPEs through the Tasman Sea to the ACC (2.65 × 104 kg/day) was significantly higher than the dry deposition flux over the Tasman Sea(493.55 kg/day), indicating the Tasman Sea's importance as a transport pathway for OPEs from low latitude areas to the South Pacific. Principal component analysis and air mass back-trajectory analysis provided evidence of terrestrial inputs from human activities that have impacted the environment in the South Pacific and the Antarctic.

10.
Mar Pollut Bull ; 192: 114978, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209659

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) are commonly found in the environment as components of brominated flame retardants. Due to their potential impact on human health and wildlife, it is imperative to closely monitor and manage their levels in the environment. This study investigated the spatial distribution, sources, and ecological risks of PBDEs and HBCDs in Jiaozhou Bay (JZB), a large bay situated on the eastern coast of China. The results showed that PBDE concentrations ranged from not detected (ND) to 7.93 ng/L in the water and ND to 65.76 ng/g in the sediment, while HBCD concentrations ranged from ND to 0.31 ng/L in the water and ND to 16.63 ng/g in the sediment. Furthermore, we observed significantly higher concentrations of PBDEs and HBCDs in the inner JZB compared to the outer JZB. Our source apportionment analysis showed that PBDEs primarily originated from the production and debromination of BDE-209, as well as the emission of commercial PeBDEs, whereas HBCDs in sediments mostly stemmed from anthropogenic activities and river input. Finally, our eco-logical risk assessment highlighted the need for continuous monitoring of PBDEs in JZB sediments. Overall, our study aims to provide valuable assistance for the environmental management of the JZB bay area, which is characterized by a complex net-work of rivers and a thriving economy.


Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Humans , Halogenated Diphenyl Ethers/analysis , Environmental Monitoring/methods , China , Water/analysis
11.
Environ Sci Pollut Res Int ; 30(19): 55057-55066, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36884168

ABSTRACT

The Antarctic ecosystem is characterized by few consumer species and simple trophic levels (TLs), rendering it an ideal setting to investigate the environmental behavior of contaminants. The paper aims to assess the presence, sources and biomagnification behavior of polycyclic aromatic hydrocarbons (PAHs) of the Antarctic food web and is the first study of biomagnifications of PAHs in the Fildes Peninsula in Antarctica. Nine representative species from the Fildes Peninsula in Antarctica were sampled and evaluated for PAH presence. PAH concentrations ranged from 477.41 to 1237.54 ng/g lipid weight (lw) in the sampled Antarctic biota, with low molecular weight PAHs (naphthalene, acenaphthylene, acenaphthene, and fluorene) comprising the majority of the PAHs. PAHs concentrations were negatively correlated with TLs. Further, the food web magnification factor (FWMF) of ∑PAHs was 0.63, suggesting biodilution of PAHs along the TLs. Source analyses revealed that the PAHs mainly originated from petroleum contamination and the combustion of fossil fuels.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Antarctic Regions , Food Chain , Ecosystem , Environmental Monitoring , China
12.
J Environ Sci (China) ; 128: 93-106, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36801045

ABSTRACT

Coastal lagoons provide many important services to human society, but their year-round use for aquaculture introduces large amounts of sewage. The contamination of antibiotic resistance genes (ARGs) is therefore of great concern. In this study, 50 ARGs subtypes, two integrase genes (intl1, intl2), and 16S rRNA genes were detected by high-throughput quantitative PCR, and standard curves of all target genes were prepared for quantification. The occurrence and distribution of ARGs in a typical coastal lagoon (XinCun lagoon, China) were comprehensively explored. We detected 44 and 38 subtypes of ARGs in the water and sediment, respectively, and discuss the various factors influencing the fate of ARGs in the coastal lagoon. Macrolides-lincosamides-streptogramins B was the primary ARG type, and macB was the predominant subtype. Antibiotic efflux and antibiotic inactivation were the main ARG resistance mechanisms. The XinCun lagoon was divided into eight functional zones. The ARGs showed a distinct spatial distribution owing to the influence of microbial biomass and anthropogenic activity in different functional zones. Fishing rafts, abandoned fish ponds, the town sewage zone, and mangrove wetlands provided a large quantity of ARGs to the XinCun lagoon. Nutrients and heavy metals also significantly correlated with the fate of the ARGs, especially NO2--N and Cu, which cannot be ignored. It is noteworthy that lagoon-barrier systems coupled with persistent pollutant inputs result in coastal lagoons acting as a "buffer pool" for ARGs, which can then accumulate and threaten the offshore environment.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Humans , Anti-Bacterial Agents/analysis , Sewage , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , China
13.
Mar Pollut Bull ; 187: 114490, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36610298

ABSTRACT

Antibiotic resistance genes (ARGs) are considered a newly emerging contaminant. This study aimed to investigate the spatial and media distribution patterns of ARGs in Jiaozhou Bay, as well as the reasons behind these patterns. The results revealed that aminoglycoside and MLSB resistant genes predominated in all samples, and the relative abundance of ARGs ranging from 10-6 to 10-2, 10-6 to 10-3 and 10-5 to 10-2 copies/16S rRNA in coastal water, bay water, and sediments, respectively. The significant spatial variation of ARGs was explained by the fact that the coastal water was more susceptible to human activities, whereas environmental physicochemical factors played a crucial role in the bay water. The intrinsic reason for the media distribution variation was the different assembly processes in the two media, while the external reason was that the ARGs in the water and sediments were mainly influenced by environmental physicochemical factors and heavy metals, respectively.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Bays , RNA, Ribosomal, 16S/genetics , Environmental Monitoring , Drug Resistance, Microbial/genetics , China
14.
Mar Environ Res ; 183: 105793, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371950

ABSTRACT

Numerous studies have elucidated the characteristics of polycyclic aromatic hydrocarbons (PAHs) in the Arctic; however, their behavior in different environments has not been studied at a large scale. To investigate the occurrence, spatial trends, air-seawater exchange and atmospheric deposition of 16 polycyclic aromatic hydrocarbons (PAHs), this study takes sample from the Northwest Pacific Ocean. to the Arctic Ocean.The concentrations of 16 PAHs in air and seawater ranged from 27 to 5658 pg/m3 and 34-338 ng/L, respectively. The air-seawater exchange flux of the region was calculated with a Whitman two-film model to be -82681-24613 ng/m2/day. Meanwhile, low-ring PAHs were transported from seawater to the air, while high-ring PAHs were transported from air to seawater. A correlation analysis between multiple environmental factors and particle phase ratio suggested that temperature might be the major driving factor for PAHs in the long-range atmospheric transport (LRAT) process. Moreover, the dry atmospheric deposition fluxes in the region were analyzed by considering environmental factors and the physicochemical properties of each PAHs monomer, these fluxes ranged from 0.001 to 696 ng/m2/day and were greater inshore than offshore and at higher latitudes. This study highlights that PAHs are affected by LRAT during their transport from Asia to Northwest Pacific and further to the Arctic Ocean, while emphasizing that air-seawater exchange plays an important role in air-sea interactions in the open ocean.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollutants/analysis , Environmental Monitoring , Seawater/chemistry , Pacific Ocean
15.
Environ Pollut ; 318: 120768, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36473643

ABSTRACT

This study provides the first data on the distribution, sources, and transport dynamics of polycyclic aromatic hydrocarbons (PAHs) in Fildes Peninsula, Antarctica via summertime analyses of lakes, seawater, snow, and air in 2013. Relatively high PAH levels and similar composition profiles (dominance of two- and three-ring PAHs) in the investigated marine and terrestrial environmental matrices were found, indicating substantial primary emissions of petrogenic PAHs. This result was corroborated by nonequilibrium partitioning of atmospheric PAHs caused by release of anthropically-derived lighter PAHs and air mass movement trajectories mainly originated from the Antarctic marginal seas. Notable geographical disparities of PAH pollution in the various types of samples consistently suggested impacts of station-related activities, rather than long-range atmospheric transport, on PAHs in Fildes Peninsula. The lack for temperature dependence for gas-phase concentrations and various molecular diagnostic ratios of atmospheric PAHs demonstrated that the impact of local anthropogenic inputs on air PAH variability supersedes the re-emission effect. The derived air-water and air-snow exchanges of PAHs in this remote region indicated a disequilibrium state, partially associated with intense local emissions of PAHs. PAH outgassing from, and absorption into, lake and marine waters were both observed, probably due to differences in anthropogenic influences among sites, while the net deposition of gaseous PAHs into snow prevailed. The results of this study shed lights on the major importance of native anthropogenic sources in the footprint and fate of PAHs in the Fildes Peninsula, which merits further monitoring.


Subject(s)
Air Pollutants , Environmental Pollution , Polycyclic Aromatic Hydrocarbons , Water Pollutants , Air Pollutants/analysis , Antarctic Regions , Environmental Monitoring/methods , Environmental Pollution/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Seawater/analysis , Water Pollutants/analysis
16.
Comput Methods Programs Biomed ; 229: 107265, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455470

ABSTRACT

BACKGROUND AND OBJECTIVE: As an emerging dual-mode optical molecular imaging, cone-beam X-ray luminescence computed tomography (CB-XLCT) has shown potential in early tumor diagnosis and other applications with increased depth and little autofluorescence. However, due to the low transfer efficiency of PNPs to convert X-ray energy to visible or near-infrared (NIR) light and X-ray dose limitation, the signal to noise ratio of projections is quite low, making the quality of CB-XLCT relatively poor. METHODS: To improve the reconstruction quality of low-counts CB-XLCT imaging, an adaptive reconstruction algorithm (named ADFISTA-MLEM) based on the maximum likelihood expectation estimation (MLEM) framework is proposed for CB-XLCT reconstruction from Poisson distributed projections. In the proposed framework, the image reconstructed by fast iterative shrinkage-thresholding algorithm (FISTA) is used as the initial image for MLEM iterations to improve reconstruction accuracy, in which both the projection noise model and the sparsity constraint of the image could be considered. For relative quantitative imaging, a specific normalization is applied to the projection data and system matrix. To determine the hyperparameter of FISTA, which may be different for different projections, an adaptive strategy (ADFISTA) is then designed for adaptive update of the hyperparameter with reconstructed image in each iteration. RESULTS AND CONCLUSIONS: Results from numerical simulations and phantom experiments indicate that the proposed framework can obtain superior reconstruction accuracy in terms of contrast to noise ratio and shape similarity. In addition, high intensity-concentration linearity between different probe targets indicates its potential for quantitative CB-XLCT imaging.


Subject(s)
Image Processing, Computer-Assisted , Luminescence , X-Rays , Image Processing, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Phantoms, Imaging , Algorithms
17.
Immun Inflamm Dis ; 10(12): e732, 2022 12.
Article in English | MEDLINE | ID: mdl-36444635

ABSTRACT

BACKGROUND: Periodontitis is a common oral inflammatory disease, and lipopolysaccharide (LPS) is a key risk factor in periodontitis pathology. Here, we used LPS-induced periodontal ligament cells (PDLCs) to explore the molecular mechanism of periodontitis. METHODS: Cell viability, proliferation, and apoptosis were analyzed by Cell Counting Kit-8, 5-ethynyl-20-deoxyuridine (EDU), and flow cytometry assays, respectively. Apart from that, their targeting relationship was validated using dual-luciferase reporter and RNA-pull down. RESULTS: Circular RNA_0138960 (circ_0138960) was notably upregulated in periodontitis sufferers (p < .001) and LPS-disposed PDLCs (p < .05). LPS exposure dampened PDLC proliferation, and promoted apoptosis and inflammation (p < .05). Circ_0138960 acted as a microRNA sponge for miR-518a-5p to affect histone deacetylase 6 (HDAC6) expression. Circ_0138960 absence-mediated protective effects in LPS-induced PDLCs were largely abrogated via silencing miR-518a-5p or HDAC6 overexpression (p < .05). CONCLUSION: Circ_0138960 promoted LPS-induced dysfunction in PDLCs by targeting miR-518a-5p/HDAC6 axis, which provided novel potential therapeutic targets for periodontitis.


Subject(s)
MicroRNAs , Periodontal Ligament , Humans , Lipopolysaccharides/toxicity , Inflammation , Cell Survival , MicroRNAs/genetics
18.
Int J Mol Med ; 50(4)2022 Oct.
Article in English | MEDLINE | ID: mdl-36004464

ABSTRACT

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the flow cytometric data shown in Fig. 4I were strikingly similar to data appearing in different form in another article by different authors. Owing to the fact that the contentious data in the above article had already been published elsewhere prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused [International Journal of Molecular Medicine 46: 119­130, 2020; DOI: 10.3892/ijmm.2020.4581].

19.
Front Plant Sci ; 13: 938476, 2022.
Article in English | MEDLINE | ID: mdl-35845661

ABSTRACT

Eukaryotic translation initiation factor 4E1 (eIF4E1) is required for the initiation of protein synthesis. The biological function of eIF4E1 in plant-potyvirus interactions has been extensively studied. However, the role of eIF4E1 in Arabidopsis development remains unclear. In this study, we show that eIF4E1 is highly expressed in the embryo and root apical meristem. In addition, eIF4E1 expression is induced by auxin. eIF4E1 mutants show embryonic cell division defects and short primary roots, a result of reduced cell divisions. Furthermore, our results show that mutation in eIF4E1 severely reduces the accumulation of PIN-FORMED (PIN) proteins and decreases auxin-responsive gene expression at the root tip. Yeast two-hybrid assays identified that eIF4E1 interacts with an RAC/ROP GTPase activator, RopGEF7, which has been previously reported to be involved in the maintenance of the root apical meristem. The interaction between eIF4E1 and RopGEF7 is confirmed by protein pull-down and bimolecular fluorescent complementation assays in plant cells. Taken together, our results demonstrated that eIF4E1 is important for auxin-regulated embryo development and root growth. The eIF4E1-RopGEF7 interaction suggests that eIF4E1 may act through ROP signaling to regulate auxin transport, thus regulating auxin-dependent patterning.

20.
J Appl Toxicol ; 42(10): 1688-1700, 2022 10.
Article in English | MEDLINE | ID: mdl-35560222

ABSTRACT

The antiviral drug remdesivir has been used to treat the growing number of coronavirus disease 2019 (COVID-19) patients. However, the drug is mainly excreted through urine and feces and introduced into the environment to affect non-target organisms, including fish, which has raised concerns about potential ecotoxicological effects on aquatic organisms. Moreover, studies on the ecological impacts of remdesivir on aquatic environments have not been reported. Here, we aimed to explore the toxicological impacts of microinjection of remdesivir on zebrafish early embryonic development and larvae and the associated mechanism. We found that 100 µM remdesivir delayed epiboly and impaired convergent movement of embryos during gastrulation, and dose-dependent increases in mortality and malformation were observed in remdesivir-treated embryos. Moreover, 10-100 µM remdesivir decreased blood flow and swimming velocity and altered the behavior of larvae. In terms of molecular mechanisms, 80 differentially expressed genes (DEGs) were identified by transcriptome analysis in the remdesivir-treated group. Some of these DEGs, such as manf, kif3a, hnf1ba, rgn, prkcz, egr1, fosab, nr4a1, and ptgs2b, were mainly involved in early embryonic development, neuronal developmental disorders, vascular disease and the blood flow pathway. These data reveal that remdesivir can impair early embryonic development, blood flow and behavior of zebrafish embryos/larvae, probably due to alterations at the transcriptome level. This study suggests that it is important to avoid the discharge of remdesivir to aquatic ecosystems and provides a theoretical foundation to hinder remdesivir-induced ecotoxicity to aquatic environments.


Subject(s)
COVID-19 Drug Treatment , Water Pollutants, Chemical , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Ecosystem , Embryo, Nonmammalian , Hepatocyte Nuclear Factor 1-beta/metabolism , Hepatocyte Nuclear Factor 1-beta/pharmacology , Larva , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...